Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38478579

RESUMO

A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.


Assuntos
Ácidos Graxos , Nitratos , Ácidos Graxos/química , Nitratos/metabolismo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
2.
Antonie Van Leeuwenhoek ; 117(1): 24, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217723

RESUMO

A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).


Assuntos
Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias Anaeróbias/genética , Firmicutes , Clostridium/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
3.
Microbes Environ ; 38(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38104970

RESUMO

Strictly hydrogen- and sulfur-oxidizing chemolithoautotrophic bacteria, particularly members of the phyla Campylobacterota and Aquificota, have a cosmopolitan distribution in deep-sea hydrothermal fields. The successful cultivation of these microorganisms in liquid media has provided insights into their physiological, evolutionary, and ecological characteristics. Notably, recent population genetic studies on Sulfurimonas (Campylobacterota) and Persephonella (Aquificota) revealed geographic separation in their populations. Advances in this field of research are largely dependent on the availability of pure cultures, which demand labor-intensive liquid cultivation procedures, such as dilution-to-extinction, given the longstanding assumption that many strictly or facultatively anaerobic chemolithoautotrophs cannot easily form colonies on solid media. We herein describe a simple and cost-effective approach for cultivating these chemolithoautotrophs on solid media. The results obtained suggest that not only the choice of gelling agent, but also the gas phase composition significantly affect the colony-forming ratio of diverse laboratory strains. The use of gellan gum as a gelling agent combined with high concentrations of H2 and CO2 in a pouch bag promoted the formation of colonies. This contrasted with the absence of colony formation on an agar-solidified medium, in which thiosulfate served as an electron donor, nitrate as an electron acceptor, and bicarbonate as a carbon source, placed in anaerobic jars under an N2 atmosphere. Our method efficiently isolated chemolithoautotrophs from a deep-sea vent sample, underscoring its potential value in research requiring pure cultures of hydrogen- and sulfur-oxidizing chemolithoautotrophs.


Assuntos
Fontes Hidrotermais , Água do Mar , Água do Mar/microbiologia , Hidrogênio , Bactérias/genética , Meios de Cultura , Oxirredução , Enxofre , Filogenia , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética
4.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37853632

RESUMO

Infrared spectroscopy is used for the chemical characterization of prokaryotes. However, its application has been limited to cell aggregates and lipid extracts because of the relatively low spatial resolution of diffraction. We herein report optical photothermal infrared (O-PTIR) spectroscopy of prokaryotes for a domain-level diagnosis at the single-cell level. The technique provided infrared spectra of individual bacterial as well as archaeal cells, and the resulting aliphatic CH3/CH2 intensity ratios showed domain-specific signatures, which may reflect distinctive cellular lipid compositions; however, there was interference by other cellular components. These results suggest the potential of O-PTIR for a domain-level diagnosis of single prokaryotic cells in natural environments.


Assuntos
Lipídeos , Células Procarióticas , Espectrofotometria Infravermelho/métodos , Lipídeos/química
5.
Proc Natl Acad Sci U S A ; 120(41): e2303302120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782799

RESUMO

An increasing amount of evidence suggests that early ocean hydrothermal systems were sustained sources of ammonia, an essential nitrogen species for prebiotic synthesis of life's building blocks. However, it remains a riddle how the abiotically generated ammonia was retained at the vent-ocean interface for the subsequent chemical evolution. Here, we demonstrate that, under simulated geoelectrochemical conditions in early ocean hydrothermal systems ([Formula: see text][Formula: see text] V versus the standard hydrogen electrode), mackinawite gradually reduces to zero-valent iron ([Formula: see text]), generating interlayer [Formula: see text] sites. This reductive conversion leads to an up to 55-fold increase in the solid/liquid partition coefficient for ammonia, enabling over 90% adsorption of 1 mM ammonia in 1 M NaCl at neutral pH. A coordinative binding of ammonia on the interlayer [Formula: see text] sites was computed to be the major mechanism of selective ammonia adsorption. Mackinawite is a ubiquitous sulfide precipitate in submarine hydrothermal systems. Given its reported catalytic function in amination, the extreme accumulation of ammonia on electroreduced mackinawite should have been a crucial initial step for prebiotic nitrogen assimilation, paving the way to the origin of life.

6.
mSystems ; 8(6): e0081723, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37843256

RESUMO

IMPORTANCE: The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.


Assuntos
Bactérias , Enzimas de Restrição-Modificação do DNA , Interações entre Hospedeiro e Microrganismos , Vírus , DNA , Enzimas de Restrição do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Ecossistema , Metiltransferases , Oceanos e Mares , Bactérias/genética , Bactérias/virologia , Vírus/genética , Interações entre Hospedeiro e Microrganismos/genética
7.
Extremophiles ; 27(3): 28, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843723

RESUMO

A novel hyperthermophilic, heterotrophic archaeon, strain YC29T, was isolated from a deep-sea hydrothermal vent in the Mid-Okinawa Trough, Japan. Cells of strain YC29T were non-motile, irregular cocci with diameters of 1.2-3.0 µm. The strain was an obligatory fermentative anaerobe capable of growth on complex proteinaceous substrates. Growth was observed between 85 and 100 °C (optimum 90-95 °C), pH 4.9-6.4 (optimum 5.1), and in the presence of 1.4-4.0% (w/v) NaCl (optimum 3.0%). Inorganic carbon was required as a carbon source. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the family Pyrodictiaceae. The genome size was 2.02 Mbp with a G+C content of 49.4%. The maximum values for average nucleotide identity (ANI), average amino acid identity (AAI), and in silico DNA-DNA hybridization (dDDH) value of strain YC29T with relatives were 67.9% (with Pyrodictium abyssi strain AV2T), 61.1% (with Pyrodictium occultum strain PL-19T), and 33.8% (with Pyrolobus fumarii strain 1AT), respectively. Based on the phylogenetic, genomic, and phenotypic characteristics, we propose that strain YC29T represents a novel genus and species, Pyrofollis japonicus gen. nov., sp. (type strain YC29T = DSM 113394T = JCM 39171T).


Assuntos
Fontes Hidrotermais , Pyrodictiaceae , Pyrodictiaceae/genética , Filogenia , RNA Ribossômico 16S/genética , DNA , Carbono , Análise de Sequência de DNA , DNA Bacteriano , Água do Mar , Ácidos Graxos/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-37540001

RESUMO

A novel mesophilic, obligately anaerobic, facultatively sulphur-reducing bacterium, designated strain IC12T, was isolated from a deep-sea hydrothermal field in the Mid-Okinawa Trough, Japan. The cells were Gram-negative, motile, short rods with a single polar flagellum. The ranges and optima of the growth temperature, NaCl concentration and pH of strain IC12T were 15-40 °C (optimum, 30-35 °C), 10-60 g l-1 (optimum, 20-30 g l-1) and pH 4.9-6.7 (optimum, pH 5.8), respectively. Yeast extract was utilized as a sole carbon and energy source for fermentative growth. Major fatty acids of strain IC12T were C14 : 0, C16 : 0 and C16 : 1 ω7. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IC12T was affiliated to the phylum Fusobacteriota and was most closely related to Ilyobacter insuetus VenChi2T (86.5 % sequence similarity). Strain IC12T contained a chromosome of 2.43 Mbp and a large plasmid of 0.30 Mbp. The G+C content of the genomic DNA was 26.4 mol%. The maximum values for average nucleotide identity and in silico DNA-DNA hybridization between strain IC12T and related strains of the phylum Fusobacteriota were 71.4 and 26.4 %, respectively. Phylogenomic, physiological and chemotaxonomic analyses indicate that strain IC12T represents a novel genus and species within the phylum Fusobacteriota, for which the name Haliovirga abyssi gen. nov., sp. nov. is proposed, with strain IC12T (= DSM 112164T=JCM 39166T) as the type strain. We also propose the family Haliovirgaceae fam. nov. to accommodate this novel genus.


Assuntos
DNA , Ácidos Graxos , Ácidos Graxos/química , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bactérias Anaeróbias/genética
9.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331792

RESUMO

Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851| |m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole-cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana-lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105| |cells| |mL-1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.


Assuntos
Terremotos , Expedições , Sedimentos Geológicos/microbiologia , Japão , Metano/metabolismo , Água
10.
Acta Biomater ; 162: 110-119, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924877

RESUMO

The scaly-foot gastropod (Chrysomallon squamiferum), which lives in the deep-sea zone of oceans around thermal vents, has a black shell and scales on the foot. Both the black shell and scales contain iron sulfide minerals such as greigite (Fe3S4) and pyrite (FeS2). Although pyrite nanoparticles can be used as materials for solar panels, it is difficult to synthesize stable and spherical nanoparticles in vitro. In this study, we extracted organic molecules that interact with nano-pyrite from the shell of the scaly-foot gastropod to develop a low-cost, eco-friendly method for pyrite nanoparticles synthesis. Myoglobin (csMG), a heme protein, was identified in the iron sulfide layer of the shell. We purified recombinant csMG (r-csMG) and demonstrated that r-csMG helped in the conversion of ferric ions, sulfide ions and sulfur into spherical shaped pyrite nanoparticles at 80°C. To reduce the effort and cost of production, we showed that commercially available myoglobin from Equus caballus (ecMG) also induced the in vitro synthesis of pyrite nanoparticles. Using structure-function experiments with digested peptides, we highlighted that the amino acid sequence of r-csMG peptides controlled the spherical shape of the nanoparticle while the hemin molecules, which the peptides interacted with, maintained the size of nanoparticles. Synthesized pyrite nanoparticles exhibited strong photoluminescence in the visible wavelength region, suggesting its potential application as a photovoltaic solar cell material. These results suggest that materials for solar cells can be produced at low cost and energy under eco-friendly conditions. STATEMENT OF SIGNIFICANCE: Pyrite is a highly promising material for photovoltaic devices because of its excellent optical, electrical, magnetic, and transport properties and high optical absorption coefficient. Almost all current pyrite synthesis methods use organic solvents at high temperature and pressure under reducing conditions. Synthesized pyrite nanoparticles are unstable and are difficult to use in devices. The scaly-foot gastropod can synthesize pyrite nanoparticles in vivo, meaning that pyrite nanoparticles can be generated in an aqueous environment at low temperature. In this study, we demonstrated the synthesis of pyrite nanoparticles using a heme protein identified in the iron sulfide layer of the scaly-foot gastropod shell. These results exemplify how natural products in organisms can inspire the innovation of new technology.


Assuntos
Gastrópodes , Nanopartículas , Animais , Cavalos , Mioglobina , Sulfetos/química
11.
ISME J ; 17(1): 12-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36151459

RESUMO

Electroautotrophic microorganisms have attracted great attention since they exhibit a new type of primary production. Here, in situ electrochemical cultivation was conducted using the naturally occurring electromotive forces at a deep-sea hydrothermal vent. The voltage and current generation originating from the resulting microbial activity was observed for 12 days of deployment, with fluctuation in response to tidal cycles. A novel bacterium belonging to the genus Thiomicrorhabdus dominated the microbial community specifically enriched on the cathode. Metagenomic analysis provided the draft genome of the bacterium and the gene repertoire indicated that the bacterium has the potential for thio-autotrophic growth, which is a typical physiological feature of the members of the genus, while the bacterium had a unique gene cluster encoding multi-heme cytochrome c proteins responsible for extracellular electron transfer. Herein, we propose this bacterium as a new species, specifically enriched during electricity generation, as 'Candidatus Thiomicrorhabdus electrophagus'. This finding suggests the natural occurrence of electrosynthetic microbial populations using the geoelectricity in deep-sea hydrothermal environments.


Assuntos
Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Filogenia , Metagenômica , Microbiota/genética , Bactérias , Eletricidade
12.
Front Microbiol ; 13: 1042116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532468

RESUMO

In deep-sea hydrothermal environments, inorganic sulfur compounds are important energy substrates for sulfur-oxidizing, -reducing, and -disproportionating microorganisms. Among these, sulfur-disproportionating bacteria have been poorly understood in terms of ecophysiology and phylogenetic diversity. Here, we isolated and characterized a novel mesophilic, strictly chemolithoautotrophic, diazotrophic sulfur-disproportionating bacterium, designated strain GF1T, from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. Strain GF1T disproportionated elemental sulfur, thiosulfate, and tetrathionate in the presence of ferrihydrite. The isolate also grew by respiratory hydrogen oxidation coupled to sulfate reduction. Phylogenetic and physiological analyses support that strain GF1T represents the type strain of a new genus and species in the family Desulfobulbaceae, for which the name Desulfolithobacter dissulfuricans gen. nov. sp. nov. is proposed. Proteomic analysis revealed that proteins related to tetrathionate reductase were specifically and abundantly produced when grown via thiosulfate disproportionation. In addition, several proteins possibly involved in thiosulfate disproportionation, including those encoded by the YTD gene cluster, were also found. The overall findings pointed to a possible diversity of sulfur-disproportionating bacteria in hydrothermal systems and provided a refined picture of microbial sulfur disproportionation.

13.
Arch Microbiol ; 205(1): 12, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462029

RESUMO

A novel bacterium, strain MOT50T, was isolated from the chimney structure at the Iheya North field in the Mid-Okinawa Trough. The cells were motile short rods with a single polar flagellum. Growth was observed between 40 and 65 â„ƒ (optimum, 52 â„ƒ), at pH values between 5.0 and 7.1 (optimum, pH 6.1) and in the presence of 2.0-4.0% NaCl (optimum, 2.5%). The isolates utilized molecular hydrogen, thiosulfate, or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate, and molecular oxygen are utilized as the sole electron acceptor. Ammonium is required as a nitrogen source. Thiosulfate, elemental sulfur, sulfate, or sulfite serves as a sulfur source for growth. The G + C content of the genomic DNA was 28.9%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain MOT50T belonged to the genus Nitrosophilus of the class "Campylobacteria", and its closest relative was Nitrosophilus labii HRV44T (97.20%). On the basis of the phylogenetic, physiological, and molecular characteristics, it is proposed that the organism represents a novel species within the genus Nitrosophilus, Nitrosophilus kaiyonis sp. nov. The type strain is MOT50T (= JCM 39187T = KCTC 25251T).


Assuntos
Fontes Hidrotermais , Tiossulfatos , Hidrogênio , RNA Ribossômico 16S/genética , Filogenia , Enxofre , Oxirredução
14.
Nat Protoc ; 17(12): 2784-2814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36104596

RESUMO

In microbiology, cultivation is a central approach for uncovering novel physiology, ecology, and evolution of microorganisms, but conventional methods have left many microorganisms found in nature uncultured. To overcome the limitations of traditional methods and culture indigenous microorganisms, we applied a two-stage approach: enrichment/activation of indigenous organisms by using a continuous-flow down-flow hanging sponge bioreactor and subsequent selective batch cultivation. Here, we provide a protocol for this bioreactor-mediated technique using activation of deep marine sediment microorganisms and downstream isolation of a syntrophic co-culture containing an archaeon closely related to the eukaryote ancestor (Candidatus Promethearchaeum syntrophicum strain MK-D1) as an example. Both stages can easily be tailored to target other environments and organisms by modifying the inoculum, feed solution/gases, attachment material and/or cultivation media. We anaerobically incubate polyurethane sponges inoculated with deep-sea methane seep sediment in a reactor at 10 °C and feed anaerobic artificial seawater medium and methane. Once phylogenetically diverse and metabolically active microorganisms are adapted to synthetic conditions in the reactor, we transition to growing community samples in glass tubes with the above medium, simple substrates and selective compounds (e.g., antibiotics). To accommodate for the slow growth anticipated for target organisms, primary cultures can be incubated for ≥6-12 months and analyzed for community composition even when no cell turbidity is observed. One casamino acid- and antibiotic-amended culture prepared in this way led to the enrichment of uncultured archaea. Through successive transfer in vitro combined with molecular growth monitoring, we successfully obtained the target archaeon with its partner methanogen as a pure syntrophic co-culture.


Assuntos
Archaea , Reatores Biológicos , Reatores Biológicos/microbiologia , Sedimentos Geológicos , Metano , Água do Mar/microbiologia , Meios de Cultura , Filogenia , RNA Ribossômico 16S
15.
PLoS One ; 17(8): e0272032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35925928

RESUMO

The hadal amphipod Hirondellea gigas is an emblematic animal of the Pacific trenches, and has a number of special adaptations to thrive in this 'extreme' environment, which includes the deepest part of the Earth's ocean. One such adaptation that has been suggested is the presence of an 'aluminum gel shield' on the surface of its body in order to prevent the dissolution of calcitic exoskeleton below the carbonate compensation depth. However, this has not been investigated under experimental conditions that sufficiently prevent aluminum artefacts, and the possibility of other elements with similar characteristic X-ray energy as aluminum (such as bromine) has not been considered. Here, we show with new electron microscopy data gathered under optimized conditions to minimize aluminum artefacts that H. gigas actually does not have an aluminum shield-instead many parts of its body are enriched in bromine, particularly gastric ossicles and setae. Results from elemental analyses pointed to the use of calcite partially substituted with magnesium by H. gigas in its exoskeleton, in order to suppress dissolution. Our results exemplify the necessity of careful sample preparation and analysis of the signals in energy-dispersive X-ray spectroscopic analysis, and the importance of analyses at different electron energies.


Assuntos
Anfípodes , Alumínio , Animais , Bromo , Moela não Aviária , Sensilas
16.
J R Soc Interface ; 19(191): 20220120, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642424

RESUMO

Organisms use various forms and orientations of chitin nanofibres to make structures with a wide range of functions, from insect wings to mussel shells. Lophotrochozoan animals such as snails and annelid worms possess an ancient 'biomineralization toolkit', enabling them to flexibly and rapidly evolve unique hard parts. The scaly-foot snail is a gastropod endemic to deep-sea hydrothermal vents, unique in producing dermal sclerites used as sites of sulfur detoxification. Once considered to be strictly proteinaceous, recent data pointed to the presence of chitin in these sclerites, but direct evidence is still lacking. Here, we show that ß-chitin fibres (approx. 5% of native weight) are indeed the building framework, through a combination of solid-state nuclear magnetic resonance spectroscopy, wide-angle X-ray diffraction, and electron microscopy. The fibres are uniaxially oriented, likely forming a structural basis for column-like channels into which the scaly-foot snail is known to actively secrete sulfur waste-expanding the known function of chitinous hard parts in animals. Our results add to the existing evidence that animals are capable of modifying and co-opting chitin synthesis pathways flexibly and rapidly, in order to serve novel functions during their evolution.


Assuntos
Bivalves , Nanofibras , Animais , Quitina/química , Caramujos , Enxofre
17.
ISME J ; 16(9): 2132-2143, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715703

RESUMO

The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.


Assuntos
Fontes Hidrotermais , Animais , Fontes Hidrotermais/microbiologia , Metagenômica , Filogenia , Caramujos/fisiologia , Simbiose/genética
18.
ISME Commun ; 2(1): 108, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938718

RESUMO

The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.

19.
Appl Environ Microbiol ; 88(2): e0075821, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788070

RESUMO

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and "Bathymodiolus" platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.


Assuntos
Methylococcaceae , Microbiota , Mytilidae , Animais , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Mytilidae/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Simbiose
20.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34739365

RESUMO

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.


Assuntos
Deltaproteobacteria/classificação , Fontes Hidrotermais , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Hidrogênio , Fontes Hidrotermais/microbiologia , Oxirredução , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfatos , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...